L-TAM: Table of Contents Steve Paris (FSU)

Module 1 - Survival Analysis

```
Section 1: Basics
       Part 1: p's and q's
       Part 2: Factorization of Survival Probabilities (p's)
              Example 1
              Example 2
       Part 3: Deferred Mortality (q's)
       Part 4: pdf of T_r
       Part 5: Curtate Future Lifetime RV (K_x)
       Part 6a: Expectation of K_x
       Part 6b: Expectation of T_x
       Part 7: 1-year recursion for e_x
Section 2: Force of Mortality
       Part 1: Notation and Definition
       Part 2: Getting _np_x from \mu_{x+t}
              Example
Section 3: Life Tables and Common Mortality Assumptions
       Part 1: Definitions and Notation
       Part 2: DeMoivre's Law with Age at Death RV
       Part 3: DeMoivre's Law with Time until Death RV
       Part 4: Generalized DeMoivre's Law (Beta Distribution)
       Part 5: Constant Force
Section 4: Extending Discrete Framework to Continuous Framework
       Part 1: Basic Idea
       Part 2: UDD
       Part 3: CF
       Part 4: Local vs Global Mortality (UDD vs DML, and CF assumptions)
Section 5: Select-and-Ultimate Rates
       Part 1: Basic Idea
              Example
Section 6: Mortality Studies (Seriatim Data)
       Part 1: Basic Idea
       Part 2: Complete Individual Data (Empirical Distributions)
       Part 3: Complete Grouped Data (Ogives)
       Part 4: Incomplete Individual Data (Kaplan-Meier and Nelson-Aalen)
       Part 5: Incomplete Grouped Data
```

Section 7: General Statuses and Failure Time (with Multiple Lives)

- Part 1: Basic Idea
- Part 2: Joint Life(JL) and Last Survivor (LS) Statuses
- Part 3: Relating Failure Time RVs
- Part 4: Joint Life Special Case (*n*-year temporary Failure Time)
- Part 5: *n*-year temporary expectations
- Part 6: Recursion for *n*-year temporary expectations

Section 8: Independent Lives and Non-Independent Lives

- Part 1: Factoring Probabilities with Independent Lives
- Part 2: Contingent Probabilities with First to Die
- Part 3: Contingent Probabilities with Second to Die
- Part 4: Common Shock

Section 9: Traditional Multiple Decrement Models

- Part 1: Introduction to Multiple Decrements
- Part 2: Multiple Decrement Probabilities
- Part 3: Introduction to Associated Single Decrements
- Part 4: Associated Single Decrement (Primed) Probabilities
- Part 5a: Relating Unprimed and Primed Probabilities (MUDD and CF)
- Part 5b: Deriving the CF (MUDD) Formula
- Part 6: Relating Unprimed and Primed Probabilities (SUDD)

Section 10: Multi-State Models

- Part 1: Introduction to Multi-States (Forces of Transition)
- Part 2: Multi-State Probabilities
- Part 3a: The Permanent Disability Model (Elementary Probabilities)
- Part 3b: The Permanent Disability Model (Advanced Probabilities)
- Part 4: The Disability Model
- Part 5: Kolmogorov's Differential Equations
- Part 6: Euler's Method for Approximating Solutions to Initial Value Problems
- Part 7: Kolmogorov's Forward Equations